Ry 36(two):452?60. 56. D ing F, et al. (1996) Functional evaluation of a chimeric mammalian peptide transporter derived in the intestinal and renal isoforms. J Physiol 497(Pt three):773?79. 57. Terada T, Saito H, Mukai M, Inui KI (1996) Identification with the histidine residues involved in substrate recognition by a rat H+/peptide cotransporter, PEPT1. FEBS Lett 394(two):196?00. 58. Terada T, Saito H, Sawada K, Hashimoto Y, Inui KI (2000) N-terminal halves of rat H+/ peptide transporters are responsible for their substrate recognition. Pharm Res 17(1):15?0. 59. Abramson J, et al. (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301(5633):610?15. 60. Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312(5774):741?44. 61. Dang S, et al. (2010) Structure of a fucose transporter in an outward-open conformation. Nature 467(7316):734?38. 62. Zhou Y, Guan L, Freites JA, Kaback HR (2008) Opening and closing in the periplasmic gate in lactose permease. Proc Natl Acad Sci USA 105(ten):3774?778. 63. Nie Y, Zhou Y, Kaback HR (2009) Clogging the periplasmic pathway in LacY. Biochemistry 48(four):738?43. 64. Guan L, Kaback HR (2006) Lessons from lactose permease. Annu Rev Biophys Biomol Struct 35(1):67?1. 65. Forrest LR, Kramer R, Ziegler C (2011) The structural basis of secondary active transport mechanisms. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1807(2): 167?88. 66. Jardetzky O (1966) Uncomplicated allosteric model for membrane pumps. Nature 211(5052): 969?70. 67. Struckmeier J, et al. (2008) Completely automated single-molecule force spectroscopy for screening applications.5-Fluoro-1,3-dimethyl-2-nitrobenzene uses Nanotechnology 19(38):384020.2,5-Dimethoxyterephthalaldehyde site 68.PMID:33460355 Bosshart PD, et al. (2008) High-throughput single-molecule force spectroscopy for membrane proteins. Nanotechnology 19(38):384014. 69. Fotiadis D, et al. (2000) Surface tongue-and-groove contours on lens MIP facilitate cell-to-cell adherence. J Mol Biol 300(four):779?89. 70. Butt H-J, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology six(1):1?. 71. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of person titin immunoglobulin domains by AFM. Science 276(5315):1109?112.E3986 | pnas.org/cgi/doi/10.1073/pnas.Bippes et al.
Cell Biochem Biophys (2013) 66:53?3 DOI ten.1007/s12013-012-9406-ORIGINAL PAPERMethadone but not Morphine Inhibits Lubiprostone-Stimulated Cl2 Currents in T84 Intestinal Cells and Recombinant Human ClC-2, but not CFTR Cl2 CurrentsJohn Cuppoletti ?Jayati Chakrabarti ?Kirti Tewari ?Danuta H. MalinowskaPublished on-line: 24 August 2012 ?The Author(s) 2012. This short article is published with open access at SpringerlinkAbstract In clinical trials, methadone, but not morphine, appeared to prevent effective effects of lubiprostone, a ClC-2 Cl- channel activator, on opioid-induced constipation. Effects of methadone and morphine on lubiprostonestimulated Cl- currents have been measured by brief circuit current (Isc) across T84 cells. Whole cell patch clamp of human ClC-2 (hClC-2) stably expressed in HEK293 cells and inside a higher expression cell line (HEK293EBNA) together with human CFTR (hCFTR) stably expressed in HEK293 cells was utilized to study methadone and morphine effects on recombinant hClC-2 and hCFTR Cl- currents. Methadone but not morphine inhibited lubiprostone-stimulated Isc in T84 cells with half-maximal inhibition at one hundred nM. Naloxone did not affect lubiprostone stimulation or m.